Numerama

23 septiembre, 2007

¡¡ATENCIÓN!! El Blog se ha cambiado de dirección. Ahora está en http://nosolomates.es
Puedes ver este post, mejorado y con más comentarios

aquí.

 

 

 

 

 

 

 

 

 

 

Aquí está el post pendiente sobre Futurama y sus relaciones con los números. En primer lugar, la solución al enigma:

Como bien respondieron Gabbahead y yoyo!!!, el reloj estaba al revés, no eran 25 minutos sino 52 segundos. Podría hablar de los ejes de simetría de los números, pero voy a seguir con Futurama. (Otro ejemplo de números al revés lo tenéis en este problema, planteado por Jordiel en el Concurso. Es el de los toreros).

Voy con una pequeña selección de las abundantes referencias matemáticas de esta serie de dibujos animados. Primero un vídeo:

Bender, como buen robot, está programado en código binario (unos y ceros, sí o no), que es lo único que entienden los ordenadores. Este sistema de numeración es igual que el sistema decimal, pero con sólo dos cifras (0 y 1) en lugar de las diez a las que estamos acostumbrados (0, 1, 2, 3… 9). La mecánica es la misma: uno cuenta unidades hasta que puede (en decimal, hasta nueve, en binario, solo hasta uno) Cuando hemos agotado nuestras cifras, el siguiente número lo escribimos como 10. Así, para representar el dos en binario, necesitamos poner 10 porque el 2, como dice Fry, no existe. (Existe dos, pero no existe el símbolo “2” para representarlo).

Otro sistema de numeración utilizado en informática es el hexadecimal (base 16), en el que disponemos de dieciséis símbolos, es decir, disponemos de símbolos para representar hasta el número quince, que son 0, 1, 2, 3…8, 9, A, B, C, D, E y F. La “B”, en hexadecimal, es el símbolo para representar el número once y la “F”, el quince. No hay símbolo para el dieciséis, así que lo escribimos 10.

Se ve mucho más claro hablando de grupos. En decimal hacemos grupos de diez en diez (uno, diez, cien, mil… siempre multiplicando por diez), en binario de dos en dos (uno, dos, cuatro, ocho, dieciséis… multiplicando por 2) y en hexadecimal, de dieciséis en dieciséis (uno, dieciséis, treinta y dos…). Así, si tenemos dieciocho puntos, en decimal lo escribimos 18 (1-8, un grupo de diez y ocho puntos sueltos) y en hexadecimal, escribiríamos 12 (1-2, un grupo de dieciséis y dos puntos sueltos) y en binario 10010 (1-0-0-1-0, un grupo de dieciséis, ninguno de ocho, ninguno de cuatro, uno de dos y ninguno suelto). Último ejemplo: treinta y dos, en decimal sería 32 (tres grupos de diez y dos sueltos) mientras que en hexadecimal sería 20 (dos grupos de dieciséis y ninguno suelto) y en binario 100000 (un grupo de treinta y dos y ninguno de dieciséis, ocho, cuatro, dos y uno)

¿Os parece raro? Pues aún conocemos otro sistema y a este también estamos habituados: El sexagesimal, que utilizamos para el tiempo y los ángulos. En este caso los grupos son de sesenta en sesenta. Así tenemos el segundo cincuenta y nueve (59), pero no el sesenta, que lo escribimos 1:00 (es lo mismo que 10, es decir un grupo de sesenta y ninguno suelto). si queremos representar ochenta segundos, no escribimos 80, sino 1:20 (un grupo de sesenta y veinte sueltos, un minuto y veinte segundos)

Otro vídeo de la serie:

Dos numeros expresables como la suma de dos cubos, el 3370318 y el 271605. Os dejo como adivinanza esas descomposiciones. Son únicas pero, por si alguno lo intenta, os gustará saber que en la versión original, el número de Bender es el 2716057. Parece que los traductores no entendieron el chiste y no les importó quitar el último 7 ¡cómo si no pasara nada!

Y, por último, dos imágenes de la postal de Navidad de Bender.

En la cubierta de la postal, vemos el dibujo de una palmera hecha con números, como la foto de Einstein que vimos en el post “Aléjate y verás“.

Y en el interior, la felicitación, por la que sabemos que Bender es el hijo número 1729, un número curioso, conocido como número de Hardy-Ramanujan, protagonista de la famosa anécdota por ser el menor número que puede expresarse como suma de dos cubos (¡otra vez!) pero de dos formas distintas, 13+123, o bien, 93+103.


Criptografía (2): El primer paso

12 septiembre, 2007

¡¡ATENCIÓN!! El Blog se ha cambiado de dirección. Ahora está en http://nosolomates.es
Puedes ver este post, mejorado y con más comentarios

aquí.

 

 

 

 

 

 

 

 

 

 

Hoy Juanjo me ha sorprendido en su blog con una foto de Sonia de Viana, que hace tiempo que tenía “fichada” para este post. Ha sido el empujón que necesitaba para retomar mis post sobre criptografía. En el anterior, aquella entrada alienígena que WordPress me ha fastidiado (con la nueva plantilla no deja “copiar y pegar”, con lo que su traducción se ha vuelto un poco complicada), ya hablé del cifrado Rot-13. Hoy, mediante esta foto:

eltono.jpg

hablaré de la codificación de un texto en números.

Seguramente la mayoría de vosotros ya habéis descifrado el mensaje de El Tono. Si es así, significa que el método de cifrado no es bueno si queremos mantener al salvo nuestros documentos de miradas indiscretas. Prácticamente cualquier persona podría descifrarlo.

Es por eso que este método no es un método de cifrado en sí mismo, sino solo el “primer paso” de otros sistemas de cifrado más complejos. Normalmente, para cifrar un texto, realizamos ciertas operaciones sobre las letras que lo componen (avanzar posiciones en el abecedario, “sumar” una clave al texto, etc) y el resultado de esas operaciones es el texto cifrado. Como es mucho más fácil realizar operaciones con números que con letras (aunque solo sea por la costumbre), y además tenemos un mayor abanico de opciones con estos, la mayoría de los sistemas de cifrado comienzan por pasar el texto a números. Y para ello, nada más sencillo que asignar a cada letra el lugar que ocupa en en abecedario.

Una vez transformado el texto en números, se aplican las transformaciones complejas (en el caso del método Rot-13, por ejemplo, sería sumar 13. En el RSA es elevar a una potencia) y se obtiene otro número, que corresponde al texto cifrado. Es más facil hacer (14 16 20 16 12 16 13 1 21 5 20)7, que NOSOLOMATES7. Ahí reside la utilidad de este cifrado.

Podéis cifrar y descifrar vuestros mensajes en esta página. Pero recordad que, si aún no habéis descifrado el mensaje de la foto, utilizar este enlace es trampa.


Utilidades de Medida

7 septiembre, 2007

¡¡ATENCIÓN!! El Blog se ha cambiado de dirección. Ahora está en http://nosolomates.es
Puedes ver este post, mejorado y con más comentarios

aquí.

 

 

 

 

 

 

 

 

 

 

Este verano han llegado a este blog dos memes, uno como blog que hace pensar y otro como blog solidario. Aunque ya he dicho que no sé muy bien qué significan, uno se alegra de que otra persona piense en ti a la hora de otorgar un premio, y ayuda a continuar con el trabajo, manteniendo la ilusión del primer día. Ayer recibí otra alegría de este tipo, en este caso porque el blog ha resultado útil, aunque ha venido sin meme.

Resulta que en el programa “¿Sabes más que un niño de Primaria?” de Antena-3, en la categoría Medidas de 4º, le hicieron a la concursante la siguiente pregunta: ¿Qué sistema se estableció en Francia en 1795 para unificar las unidades de medida? La concursante se jugaba 50000€ y creo que eso influyó a la hora de plantarse, si hubiera sido una de las primeras preguntas estoy seguro de que la hubiera acertado. El caso es que, mientras la concursante se decidía entre arriesgarse o no, en este blog ocurría esto:

stats1.jpg

¿A qué se debe ese subidón? Pues a personas que estaban viendo la tele y, mientras la concursante se decidía, se fueron a Google y buscaron:

stats2.gif

Google daba en primer lugar este blog y en él se hallaba la respuesta correcta: el Sistema Métrico Decimal. Así que, aquel post dedicado a las manifestaciones ascendió hasta la cima:

stats3.gif

dándoles a unas cuantas personas la oportunidad de conocer una respuesta que iban a conocer en menos de dos minutos por medio del presentador. Pero no es lo mismo. En esos dos minutos, pudieron decirle a la tele: “¡El Sistema Métrico Decimal! ¡No te plantes, que es fácil! ¡No seas tonta, el Sistema Métrico Decimal! ¡Dilo, dilo!” como si la concursante pudiera oírlos.

Tienen gracia algunos comportamientos humanos. Y yo me alegro de haber sido útil.